
Y□▲□■ AOB394Z-口口4-3I智能型可编程真有效值测量三相电流组合表使用说明书V4.0

一、型号定义

二、常用产品型号选型说明

产品名称	产品型号	外形 2	外形尺寸代号(□内填数字) 2 3 7 8 9			外形尺寸代号含义及开孔尺寸	
三相电流组合表	AOB394Z-□X4-3I	V					表示该型号仪表所对应的外形尺寸代号可被选择,
三相电流组合表带报警	AOB394Z-□K4-3I	\vee	\vee	\vee		\checkmark	选型时必须在"□"内填入一个外形尺寸代号
三相电流组合表带通讯	AOB394Z-□T4-3I		$\sqrt{}$	\checkmark	\checkmark	\checkmark	2 表示120x120mm、开孔为111x111mm,
三相电流组合表带变送	AOB394Z-□B4-3I	\vee	\vee	\vee		\checkmark	3 表示80x80mm、
三相电流组合表带通讯和报警	AOB394Z-□S4-3I		\vee	\vee		\checkmark	7 表示72x72mm、 开孔为67x67mm, 8 表示48x48mm、 开孔为45x45mm。
三相电流组合表带通讯和变送	AOB394Z-□D4-3I	\vee	\vee	\vee		\checkmark	9 表示96x96mm、 开孔为91x91mm

三、技术参数

3.1 电流测量显示范围: AC 0 ~ 10A(直接测量)、 AC 0 ~ 999.9kA (外附电流互感器)

3.2 额定输入电流: 1A、5A 3.3 输入频率范围: 45~65Hz

3.4 测量准确度: 0.5级 3.5 采样速率: 2次/s

3.6 测量显示方式: 真有效值测量, 三排4位LED数码管显示

3.7 输入回路功耗: < 0.5VA

3.8 显示分辨力: 最高为0.001A, 小数点自动移位, A/kA单位自动切换

3.9 辅助电源: AC/DC 85~264V 50/60Hz 功耗<3VA

3.10 报警输出: 三相上下限报警同一继电器输出,继电器触点容量AC250V/2A、DC30V/2A

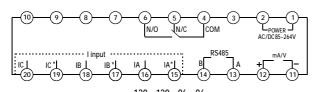
3.11 变送输出:线性度0.3%,输出可在0-10mA、0-20mA、4-20mA之间自由切换,负载电阻≤300Ω,变送输出与信号

输入及辅助电源端口之间电气隔离

3.12 通讯接口: RS485串行通讯,采用MODBUS_RTU通讯协议 3.13 工作环境: 温度-10~50℃, 湿度≤85%RH的无腐蚀性场合

四、安装与接线

4.1 外形与安装开孔尺寸


仪表外形	面框尺寸		売	体 尺 寸	安装开孔尺寸		
	宽	佪	宽	高	深	宽	高
120X120	120	120	110	110	85	111	111
80X80	80	80	74	74	85	75	75
72X72	72	72	66	66	85	67	67
48X48	48	48	44	44	85	45	45
96X96	96	96	90	90	85	91	91

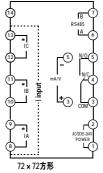
单位: mm

4.2 安装方法

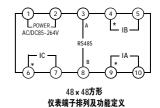
根据仪表外形在上表中选择对应的开孔尺寸,在安装屏面上开一个孔,仪表嵌入安装孔后将两个夹持件放入仪表壳体的夹持槽内,用力推紧即可。

4.3 端子排列与接线说明(注:如与仪表壳体上接线图不一致,请以仪表壳体上为准)

120×120、96×96 仪表端子排列及功能定义

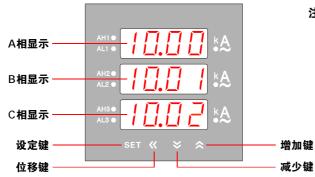

接线标识说明:

POWER: 仪表辅助电源端口 I input: 三相电流信号输入


报警继电器输出端口

COM: 继电器触点公共端 N/C: 继电器触点常闭端 N/O: 继电器触点常开端 mA/V: 变送电流或变送电压输出端

RS485**通讯输出端口** A: RS485 "A"端 B: RS485 "B"端


72×72方形 仪表端子排列及功能定义

A B C N 3CT典型接线方式(>10A时)

五、编程与使用

5.1 面板说明

注: k指示灯被点亮时,表示仪表单位已切换 到kA; AH1、AH2、AH3指示灯被点亮时, 分别表示仪表A、B、C相电量示值已超过 上限报警设定值; AL1、AL2、AL3指示灯被 点亮时,分别表示仪表A、B、C相电量示值 已低于下限报警设定值;

5.2 编程操作说明

按一下SET进入编程,口令为803,在编程状态下按住SET键2s可直接退出,超过120s无按键动作自动返回测量值显示状态

序号	参数代号	参数名称	设置范围	说 明
1	ΓĿ	电流互感器倍率 Ct	1 ~ 9999	设置值应等于被测量线路中电流互感器一次侧与二次侧的比值, 无电流互感器时,倍率设置为1
2	Addr	通讯地址 Addr	1 ~ 247	用于设置仪表的本机通讯地址,此地址在整个通讯总线中是唯一的。
3	6And	通讯波特率 bAud	1200、2400、4800、9600	仪表的通讯波特率可分别设置为1200、2400、4800、9600 (对应通讯参数值分别为0、1、2、3)
4	PAr	通讯格式PAr	n8.2 n8.1 o8.1 E8.1	n8.2 仪表的通讯格式为8位数据,2个停止位,无校验(通讯参数值=0) n8.1 仪表的通讯格式为8位数据,1个停止位,无校验(通讯参数值=1) o8.1 仪表的通讯格式为8位数据,1个停止位,奇校验(通讯参数值=2) E8.1 仪表的通讯格式为8位数据,1个停止位,偶校验(通讯参数值=3)
5	d₽- (报警和变送输出菜单 小数点位置及单位 dP - I	A3 A2 A1 A0 kA2 kA1	此菜单对L1、H1、dF1、L2、H2、dF2、L3、H3、dF3、SdL、SdH有效。A3:单位A,小数点在千位A2:单位A,小数点在百位A1:单位A,小数点在十位A0:单位A,无小数点 kA2:单位kA,小数点在百位 kA1:单位kA,小数点在百位kA1:单位kA,小数点在百位kA1:单位kA,小数点在百位
6	LI	A相报警输出下限 L1	-1 ~ 9998	设置A相下限报警值(单位和小数点位置由dP-l决定),设置为-1时 A相下限报警关闭
7	Н 1	A相报警输出上限 H1	0 ~ 9999	设置A相上限报警值(单位和小数点位置由dP-l决定),设置为9999时 A相上限报警关闭
8	dF I	A相报警输出切换差 dF1	0 ~ 9999	设置报警切换差(单位和小数点位置由dP-I决定)可避免报警输出连续 动作,本设置同时作用于A相的上限和下限报警输出

9	ΓZ	B 相报警输出下限 L2	-1 ~ 9998	设置B相下限报警值(单位和小数点位置由dP-l决定),设置为-1时 B相下限报警关闭
10	H∂	B 相报警输出上限 H2	0 ~ 9999	设置B相上限报警值(单位和小数点位置由dP-l决定),设置为9999时 B相上限报警关闭
11	dF2	B 相报警输出切换差 dF2	0 ~ 9999	设置报警切换差(单位和小数点位置由dP-l决定)可避免报警输出连续 动作,本设置同时作用于B相的上限和下限报警输出
12	L∃	C相报警输出下限 L3	-1 ~ 9998	设置C相下限报警值(单位和小数点位置由dP-I决定),设置为-1时 C相下限报警关闭
13	Н∃	C相报警输出上限 H3	0 ~ 9999	设置C相上限报警值(单位和小数点位置由dP-I决定),设置为9999时 C相上限报警关闭
14	dF3	C相报警输出切换差 dF3	0 ~ 9999	设置报警切换差(单位和小数点位置由dP-l决定)可避免报警输出连续 动作,本设置同时作用于C相的上限和下限报警输出
15	dЬ	报警延迟时间 dt	0.0 ~ 2200.0s	用于设置仪表越限报警动作时的滞后时间
16	5 d D	变送输出对象 SdO	IA、IB、IC	从A、B、C三相电流中选择其中一相作为变送输出 (对应通讯参数值分别为0、1、2)
17	5dL	变送输出下限 SdL	0 ~ 9999	设置变送输出范围下限(单位和小数点位置由dP-l决定)
18	5 <i>d</i> H	变送输出上限 SdH	0 ~ 9999	设置变送输出范围上限(单位和小数点位置由dP-I决定)
19	5dE	变送输出规格 Sdt	0-10, 0-20, 4-20	设置变送输出规格(0-10mA、0-20mA、4-20mA对应通讯参数 值分别为0、1、2)

5.3、通讯参数说明

仪表提供了RS485通讯接口,采用Modbus-RTU通讯协议(支持01H、03H、04H、06H、10H指令),仪表寄存器 地址及参数说明见下表:

参数地址	参数代号	参数说明	字节长度	数据类型	属性
01H	dP- 1	报警和变送输出菜单小数点位置及单位	2	int	R/W
04H	ΕĿ	电流互感器倍率 Ct	2	int	R/W
05H	Addr	通讯地址	2	int	R/W
06H	6Aud	通讯波特率(参数值见编程操作说明)	2	int	R/W
07H	PA-	通讯格式(参数值见编程操作说明)	2	int	R/W
08H	LI	A相报警下限(单位和小数点位置由dP-l决定)	2	int	R/W
09H	HI	A相报警上限(单位和小数点位置由dP-l决定)	2	int	R/W
0AH	dF I	A相报警切换差(单位和小数点位置由dP-l决定)	2	int	R/W
0BH	LZ	B相报警下限(单位和小数点位置由dP-l决定)	2	int	R/W
0CH	H2	B相报警上限(单位和小数点位置由dP-l决定)	2	int	R/W
0DH	dF2	B相报警切换差(单位和小数点位置由dP-l决定)	2	int	R/W
0EH	LЭ	C相报警下限(单位和小数点位置由dP-l决定)	2	int	R/W
0FH	Н∃	C相报警上限(单位和小数点位置由dP-l决定)	2	int	R/W
10H	dF∃	C相报警切换差(单位和小数点位置由dP-l决定)	2	int	R/W
11H	дĿ	报警延迟时间(实际值 = 通讯值/10)	2	int	R/W
12H	540	变送输出对象	2	int	R/W
13H	5dL	变送下限(单位和小数点位置由dP-I决定)	2	int	R/W
14H	5 <i>dH</i>	变送上限(单位和小数点位置由dP-l决定)	2	int	R/W
15H	5dE	变送输出规格(参数值见编程操作说明)	2	int	R/W
17H	PV1	A相电流测量值(仪表示值=通讯参数值×CT/1000)	2	int	R
18H	PV2	B相电流测量值(仪表示值=通讯参数值×CT/1000)	2	int	R
19H	PV3	C相电流测量值(仪表示值=通讯参数值×CT/1000)	2	int	R

5.4、注意事项

- 5.4.1 通电前请再次确认仪表辅助电源、输入信号、接线是否正确。
- 5.4.2 仪表出厂时已将量程设置为与用户订货时所提供的规格参数一致, 用户使用前应再次核对仪表的量程设定值与用户所配用的互感器 规格是否一致。如不一致则需对仪表量程重新进行设置。

乐清市奥宾仪表有限公司

地址: 浙江省乐清市城南街道宋湖村宋竹路19弄1号 电话: 0577-62535910 传真: 0577-62665910 全国统一服务电话: 400-873-2005

Http://www.yqaob.com